
January 2005 www.stsc.hill.af.mil 11

Since its beginnings in 1991 with a small
group of programmers – some consid-

ered fanatics – Linux has become a force of
hundreds of thousands [1]. The value of
open source computing is found in the abil-
ity to leverage the talents and resources of
an entire community. The Program Execu-
tive Office for Simulation, Training, and
Instrumentation (PEO STRI) is positioning
its next-generation constructive simulation
to provide this same benefit to the Army’s
modeling and simulation (M&S) community.

The One Semi-Automated Forces
(OneSAF) Objective System (OOS) is being
developed to primarily serve training audi-
ences, research scientists, and acquisition
analysts. The OOS will also provide embed-
ded simulation capabilities as part of the
Army’s Future Combat Systems. Once field-
ed in fiscal year 2006, the OOS will not only
be used by the Army, but also will serve
multi-service, international, industry, and
academic organizations. Releasing source
code to such a vast network of developers
will certainly reap benefits for the
Department of Defense (DoD) M&S com-
munity as a whole; however, distributing
source code alone will not provide the opti-
mal mechanism for a community to work
together.

Initial efforts focused on developing a
capable, robust, and extensible architecture
supporting a toolkit that will allow users to
grow the baseline. Active program office
support, tools, and processes are also neces-
sary to foster communication and increase
the likelihood that community-developed
capabilities will be integrated and shared
with other users and developers. Finally,
growing OOS product line capabilities will
not be limited only to skillful Java program-
mers: A software toolset will allow a user
who is not a programmer to build military
entities, units, and their respective activities.

OneSAF Background
The OOS is the U.S. Army’s next-generation
simulation system that can represent a full

range of military operations, systems, and
control processes. It will accurately and
effectively represent specific activities of
combat; command, control, communica-
tions, computers, and intelligence; combat
support; and combat service support. It is an
entity-level simulation, meaning that it can
simulate the activities of individual combat-
ants or vehicles (as opposed to aggregate-
level simulations, which represent combat-
ants and vehicles as groupings). It will also
provide the appropriate representations of
the physical environment (e.g., terrain fea-
tures, weather, illumination, etc.) and its
effect on simulated activities and behaviors.

One aspect that makes the OOS unique
among Army simulations is its design for
use by three distinct Army M&S domains.
Specifically, the Advanced Concepts and
Requirements (ACR) domain uses M&S for
experimentation and analyses on Army doc-
trine and force-related concepts. The
Research, Development, and Acquisition
(RDA) domain uses M&S for acquisition
analyses focused on equipping and support-
ing currently fielded and future forces.
Finally, the Training, Exercises, and Military
Operations (TEMO) domain employs M&S
to train the force. It does so using live simu-
lation (actual equipment on training ranges),
virtual simulation (immersing the trainee
into a synthetic environment), and construc-
tive simulation (war games using computer-
generated forces).

It Is About Saving Resources
The OneSAF program concept originated
in January 1996 following an extensive study
concluding that the Army was caught in a
wasteful spending cycle, making identical or
similar enhancements to many legacy simu-
lations across three different user domains.
In May 1997, the deputy commanding gen-
eral for Training and Doctrine Command
approved the Mission Needs Statement for
OneSAF, which stated:

The need for OneSAF capabilities is

not a response to a specific warfight-
ing threat against the force; the need
is driven by the guidance to reduce
duplication of M&S investments,
foster interoperability and reuse
across M&S domains, and meet the
M&S requirements of the future
force. [2]

The Army decided the best approach for
overcoming the problems associated with
the multitude of aging simulations was to
create a single, general-purpose, entity-level
simulation and associated simulation event
support tool [3].

Lessons Learned From a
Legacy Simulation
The OneSAF program has drawn many
lessons from the now-retired Modular Semi-
Automated Forces (ModSAF) program.
While the ModSAF simulation was nowhere
near providing OOS’ required capabilities, it
was an entity-level military simulation serv-
ing a multi-domain M&S community. If not
for the decision to release the source code,
ModSAF would likely have been relatively
unknown.

Funded by the Defense Advanced
Research Projects Agency in the early 1990s,
ModSAF was developed to facilitate syn-
thetic environment research in support of
distributed interactive simulation applica-
tions. Word of the availability of source
code quickly spread through the M&S com-
munity, and requests for the software steadi-
ly grew up to the point of its retirement in
2002. By its end, more than 200 organiza-
tions had placed requests for the source
code. The OneSAF Program Office reaped
many lessons learned from the ModSAF
program – those worth continuing as well as
those that needed improvement.

Two ModSAF characteristics deemed
critical to the success of OneSAF include
the release of source code and the responsi-
bility to provide services to facilitate and

Open Source Opens Opportunities for 
Army’s Simulation System

The One Semi-Automated Forces (OneSAF) Objective System is the U.S. Army’s next-generation, entity-level, simulation
system planned to provide a comprehensive set of tools supporting computer-based simulation event setup, execution, and review.
Postured as an open-architecture, open-source application, the OneSAF program will put this software into the hands of a
vast number of developers throughout the Department of Defense with the intent of creating unprecedented participation across
the modeling and simulation community to include multi-service, international, industry, and academia experts in the evolution
of the OneSAF system. This article describes the factors that led OneSAF to an open source development methodology, the
open source principles OneSAF is supporting, and the key processes and tools supporting the open source development. 

Dr. Robert L. Wittman Jr.
MITRE Corporation

Douglas J. Parsons
Program Executive Office

 



Open Source Software

12 CROSSTALK The Journal of Defense Software Engineering January 2005

enhance communications among the
OneSAF user community. How OOS
embraces these characteristics is described
in the following paragraphs.

Open Source and OneSAF
Releasing source code as part of DoD
applications raises numerous questions
ranging from security concerns to baseline
configuration management to cooperative

development and, finally, integration. To
address these concerns and to abide by
DoD acquisition guidelines, OneSAF nec-
essarily qualifies its definition of open
source development.

For the vast majority of organizations
that will request the OneSAF baseline, the
distribution process will be much like that
employed with ModSAF where the program
manager (PM) of OneSAF distributes the

baseline with source code at no cost. This is
a condition where OneSAF aligns directly
with a primary tenet of open source soft-
ware as defined by the Open Source
Initiative; however, there are key distinctions
between the open source tenets and the
OneSAF distribution model. The Open
Source Initiative defines open source as
software that provides the following rights
and obligations [4]:
a) No royalty or other fee imposed upon

redistribution.
b) Availability of the source code.
c) Right to create modifications and deriv-

ative works.
d) May require modified versions to be dis-

tributed as the original version plus
patches.

e) No discrimination against persons or
groups.

f) No discrimination against fields of
endeavor.

g) All rights granted must flow through
to/with redistributed versions.

h) The license applies to the program as a
whole and to each of its components.

i) The license must not restrict other soft-
ware, thus permitting the distribution of
open source and closed source software
together.
Of these, a, b, c, g, and h apply to the

OneSAF distribution process. While not
classified, the OOS will have content (e.g.,
data, algorithms) deemed sensitive by the
U.S. Department of the Army. The baseline
cannot be freely distributed as defined for
open source due to security reasons. As
such, PM OneSAF must be selective in the
distribution of the OOS baseline. Essen-
tially, there are two basic commitments
made when a user signs a OneSAF distribu-
tion agreement:
1. Authorization to redistribute the base-

line is restricted to PM OneSAF.
2. Users who develop new functionality

into the OneSAF baseline agree to pro-
vide those capabilities back to PM
OneSAF for possible reintegration.
These constraints offer advantages

across the OneSAF user community.
Facilitating distribution through a single
focal point allows the PM to have knowl-
edge of whom and how users intend to use
the baseline. This knowledge will enhance
the ability to identify and integrate useful
community-developed capabilities into
future baseline releases.

Helping to Communicate
In light of the restrictions OneSAF impos-
es on pure open source distribution, the
OneSAF leadership felt compelled to pro-
vide communication-enhancing tools and
processes that were seen as critical to the

Tool Description

Web-Based

OneSAF
Objective
System

Development
Portal

The cornerstone of the OneSAF development environment is

<https://www.OneSAF.net>. It is a secure Web site that houses technical
information and historical and current programmatic, organizational, and
task order structure. Technical information from architectural designs

down to the Application Programmer's Interface (API) descriptions can
be found on the site. The API descriptions are provided by automated
code scrappers that generate Javadocs on a periodic basis. User ID and

password are required.

Apache HTTPS

Server

The Apache server <www.apache.org> provides a Web server for the

OneSAF.net environment.

Mailman Distributed asynchronous discussions and archiving is provided via
e-mail using the Gnu's Not Unix free, open source product Mailman

<www.gnu.org/software/mailman>. Mailman provides an integrated Web
environment for managing e-mail discussions and e-newsletter lists. It
offers a complement of mail list functionality, including built-in archiving,

automatic bounce processing, content filtering, digest delivery, spam
filters, and Web-based list administration.

Concurrent

Versioning
System .

 

Configuration management and revision control processes and services

are built around the Concurrent Versioning System (CVS)
<www.cvshome.org> CVS version 1.10.8 is freely available open source
software, and provides revision control for all software development and

Web-based information developed and used by the OneSAF team.

The Dynamic

Object-Oriented
Requirements
System

provided by the 

Automated support for requirements management and tracking is

Dynamic Object-Oriented Requirements System
(DOORS) <www.telelogic.com>. Although neither freely available nor
open source, this automated tool supports the requirements-driven

OneSAF development process. DOORS version 7.0 provides automated
support for OneSAF's rigorous requirements analysis and tracking
process and is accessible to all task order participants within the

OneSAF Integration and Development Environment building. DOORS
allows requirements storage and retrieval, and maintains linkages between
user, system, and software requirements.

Together
Control Center

Automated software design and development support is provided by the
Together Control Center (TCC) version 6.0 <www.togethersoft.com>. The 
TCC is neither free nor open source, but is necessary to meet the managed

Software Engineering Institute Level 4 software development process in
use by the architecture and integration contractor. The TCC allows
integrated access to a user-configurable suite of software development 

tools. These tools span the software development life cycle from analysis
through test.

WebRT
WebRT tool

Automated risk tracking, action-item tracking, and defect tracking are

handled using the freely available open source
<www.bestpractical.com/index.html>. WebRT 1.0.1- 4 has been
customized to provide a Web-enabled tool to track and manage defects,

issues, risks, and action items within OneSAF.

Java

v

Java provides a platform-independent development language and
development kit to OneSAF. Sun's Java version 2.0

<www.javasoft.com>, along with the Software Development Kit (SDK)
ersion 1.4.1, provides the Java language programming foundation for

the OneSAF integrated drive electronics. OneSAF is reviewing the

capabilities and schedule for stepping up the next major release of the
Java SDK.

XML Spy

.>

e

<

On

As data architecture and management play a critical role across the pre-
exercise, run time, and post-exercise activities, OneSAF is leveraging
eXtensible Markup Language (XML) technologies including XML Spy

www.xmlspy.com XML Spy version 4.0 provides the OneSAF users
within the IDE the ability to create XML schemas that comply with the

SAF Data Interchange Formats (DIF) standards. XML Spy features a

format checking and validation tool to cross-check a document against its
DIF.

Table 1: Enabling Tools for OneSAF Open Source Development

 



Open Source Opens Opportunities for Army’s Simulation System

January 2005 www.stsc.hill.af.mil 13

success of ModSAF. For OneSAF these
tools leverage Web- and e-mail-based tech-
nologies. For a list and description of these
tools and technologies, see Table 1.

These tools are actively in use and have
provided huge dividends in terms of user
engagement and feedback. As part of the
normal OneSAF development process,
users review demonstrable capabilities and
code and then electronically submit their
comments, enhancements, and/or changes
with supporting documentation to the Web-
served comment and defect repository.
These submissions are reviewed, catego-
rized, and assigned for action.

After OneSAF Full Operational
Capability at the end of fiscal year 2005,
these Web-based tools may be enhanced to
support code updates that can be inserted
into an integration branch, compiled, and
automatically regression tested with the
results posted to the OneSAF Web and noti-
fication e-mailed to the developer. Currently,
architecture compliance tools and processes
exist to allow external developers to plan for
a specific level of integration with the
OneSAF code. The external developers’
decisions are dependent on their require-
ments and investment in existing applica-
tions. Prior to formal baseline integration,
new code that has been successfully inte-
grated will be posted for download at the
users own risk.

A formal OneSAF Configuration
Control Board (CCB) will choose which
newly integrated capabilities to incorporate
into the next formally released baseline.
Once incorporated into the baseline, PM
OneSAF assumes responsibility for these
enhancements, distributes them within the
normal baseline distribution process, and
removes the pre-baselined code from the
use-at-your-own-risk Web page.

In addition to sponsoring CCB meet-
ings, OneSAF now holds regular user group
meetings for both the domestic and interna-
tional M&S communities. This user group
meeting gives users the opportunity to
exchange relevant information about One
SAF and its individual programs, demon-
strate new capabilities, voice concerns, raise
issues, and make recommendations.

Filling the Gaps 
It was also critical to OneSAF’s success to
improve several ModSAF architectural
blemishes. These critical improvements
include (1) providing a more composable
and extensible software architecture; (2)
focusing on and providing tools for non-
programmers to extend the list of simulated
entities, units, and behaviors; (3) providing
mechanisms to support greater success
when integrating user-developed code; and

(4) providing mechanisms to fully document
the interfaces and code delivered.

To meet the challenges and limitations
of earlier simulation systems, the OneSAF
architects applied a software-based product-
line architecture development approach.
The product-line approach concentrates on
identifying and defining interfaces between
independent, architecture-level compo-
nents, and then specifies how these existing
components can be automatically composed
into useful end-user applications. Looking
back on the early – circa 2001– OneSAF
architectural development, three key archi-
tecture-related tenets stand out as significant
enablers to the four improvement areas
mentioned above, and to the overall success
of the program. These tenets include a
coordinated architectural vision, an iterative
and incremental development process, and
close user and developer collaboration.

Tenet I: Create a Coordinated System
Architectural Vision
For OneSAF, this was essential in orienting
and maintaining forward momentum on
two of the four critical improvement areas:
overall architecture support to composabili-
ty and extensibility requirements, and sup-
port for tool-based extensibility.

Composability and extensibility were
viewed as essential for OneSAF because
these characteristics were especially limited
by ModSAF’s architecture. ModSAF’s
aggregate applications made it difficult,
expensive, and time consuming for the com-
munity to make specific independent modi-
fications and for these modifications to be
integrated back into the baseline. This was
particularly true when multiple modifica-
tions were made to a single application.

The OneSAF architecture vision was
developed early on in concert with the pro-
curement team, the users, and the develop-
ers. The vision focused on system-level
composability and the architecture’s ability
to support independent component devel-
opment along well-defined interfaces within
quality and functional compliance specifica-
tions. This was the key to enabling the gov-
ernment’s task order procurement strategy
of issuing multiple contracts to develop the
independent system components.

An architecture and integration contract
was also issued to finalize the interface,
functional, and quality specifications, as well
as to create the development infrastructure
[3] and develop the initial toolset. By forging
this vision early on, the program was able to
develop a set of objective measures called
interface maturity levels used to define objec-
tives and emphasize and measure progress
against the OneSAF requirement set.

Since program inception, from the

architecture level down to implementation,
particular emphasis has been on the com-
posability tools allowing end-users to com-
pose new entities, units, and their associated
behaviors from existing software primitives
without the need to write or even access the
source code. These tools are highlighted in
the OneSAF architecture as the Model
Composer tools and include the Entity
Composer, the Unit Composer, and the
Behavior Composer.

The Entity Composer allows a OneSAF
simulation entity such as an aircraft, heli-
copter, tank, truck, or individual combatant
to be composed from individual model
components using a Windows-based graph-
ical user interface (GUI). Model compo-
nents may include visual or other radar-
based sensors, specific types of weapons,
specific communications devices, and spe-
cific mobility components such as wheeled or
tracked. Additionally, the user can select spe-
cific types of physical models that regulate
the vulnerability, load carrying capacity, and
other physical aspects of the entity.

The Unit Composer supports grouping
individual entities into military units and
civilian organizations using a GUI-based
front end. The Unit Composer allows visu-
alization and modification of all entities and
previously constructed units. Once a unit is
constructed, specific behaviors defining the
doctrine and tactics of the unit can be asso-
ciated with the unit. These behaviors are
constructed using Behavior Composer.

The Behavior Composer allows the
graphical construction of entity and unit
behaviors from existing primitives (software
coded behaviors) and other composite
behaviors. Composite behaviors are simply
behaviors that are made up of other com-
posite or primitive behaviors. The Behavior
Composer allows the specification of
sequential or parallel behaviors that provide
the automated control, reactions, and over-
all behaviors of entities and units.

Tenet II: Use an Iterative and
Incremental Development Process
For OneSAF, an iterative and incremental
process enabled two important effects. First,
it allowed the program to create and test,
through successive iterations, a set of con-
sistent, comprehensive, and useful architec-
tural- and implementation-level documenta-
tion. It also allowed the program to test and
streamline its support for external develop-
ment and integration, again, by applying
lessons learned through successive iterations
of the integration and test process.
Specifying the architectural vision on paper
and then working toward that vision in code
allowed negotiated changes to the architec-
ture where necessary to maintain consisten-

 



Open Source Software

14 CROSSTALK The Journal of Defense Software Engineering January 2005

cy with the code. Changes occurred due to
developmental breakthroughs, clearer un-
derstanding of requirements, or necessary
changes due to reuse of legacy applications.

OneSAF continues to use an eight-week
build process as the cornerstone for soft-
ware and system engineering activities. The
builds begin with defined, measurable, and
in many cases, demonstrable objectives and
then progress through analysis, design, code,
and unit test. During the subsequent build,
the previous build’s products are sent
through a system-level integration and test
process. At yearly intervals, the system is
packaged and delivered to a restricted set of
beta-test sites. OneSAF is currently in its
Block C development cycle and has success-
fully released its Block A and B system
products to more than 50 beta-test sites.

For OneSAF, the iterative and incre-
mental process also enabled the drive to
demonstrate capabilities early and often to
support a rich level of user interaction and
feedback across the ACR, RDA, and
TEMO domains.

Tenet III: Establish and Maintain Close
User and Developer Collaboration
For OneSAF, this enabled continual feed-
back, prioritization, and interpretation of
key user needs and requirements. The cur-
rent success of the OneSAF program is also
attributed to these close developer and user
interactions. From the start, the develop-
ment and user representative teams have
been collocated in the OneSAF Integrated
Development Environment, thereby
enabling easy and frequent interaction
between the more than 100 system and soft-
ware engineers, the government manage-
ment and technical personnel, and the
domain (ACR, RDA, and TEMO) user rep-
resentatives. This interaction is key to short-
ening the development cycle, as domain-
specific questions can be quickly resolved.

Conclusion
From the start, OneSAF leadership has
encouraged non-traditional software
development methods. Open source
development remains central as a new way
to create, distribute, proliferate, and
extend the simulation capabilities
promised by OneSAF. Using lessons from
earlier simulations, open source concepts
played heavily in the selection and creation
of processes and tools to meet the
requirements of the OneSAF program.

Open source development has already
paid large dividends to the OneSAF pro-
gram ranging from enhanced Web-based
communications between developers and
users gained from using open source Web-
based servers, mail lists, and request tracking

software, to the advanced native capabilities
within the Java development environment.
OneSAF leadership believes the benefits of
open source development will expand upon
OneSAF’s formal release by allowing a wide
range of developers to contribute to and
propose extensions back to the OneSAF
baseline. Once integrated into the core base-
line, a capability developed by a given orga-
nization is available for use and extension by
the community of OneSAF users.

Although OneSAF is still in develop-
ment, once formally released in fiscal year
2006, it will be available and distributed with
source code free of charge to any organiza-
tion within the DoD with a valid OneSAF
requirement. While OneSAF is focused as
an Army/DoD program, other inter-agency
organizations (e.g., other services, homeland
defense, emergency response groups/
police, etc.), industry, and academia can gain
access to the application.

OneSAF will also be available to the
international community. Typically, inter-
national arrangements are made either
through data exchange agreements, for-
eign military sales cases, or project agree-
ments. Because of the sensitive nature of
OneSAF, removing the non-exportable
data and algorithms will develop a special-
ized international baseline.

Finally, as OneSAF prepares to enter its
final year of development prior to formal

release, it will evaluate and grow the neces-
sary capabilities to accommodate distributed
open source development. It is expected,
based on lessons learned and experience to
date, that the necessary tool and process
changes will be small incremental changes
versus an explosive big bang event.

To find out more about the OOS, please
contact the authors, PM OneSAF, Lt. Col.
John “Buck” Surdu at <john.surdu@
peostri.army.mil>, or visit <www.one
saf.org>.u

References
1. Hasan, Ragib. “History of Linux.” Vers.

2.1. University of Illinois at Urbana-
Champaign, July 2002 <https://net
files.uiuc.edu/rhasan/linux>.

2. Training and Doctrine Command.
“Mission Needs Statement.” U.S. Army,
2004 <http://onesaf.org/1SAFMNS.
doc>.

3. Wittman, Robert L., and Anthony J.
Courtemanche. “The OneSAF Product
Line Architecture: An Overview of the
Products and Process.” SimTeCT 2002.
Melbourne Convention Center,
Melbourne, Australia, 13-16 May 2002.

4. Webbink, Mark H. “Understanding
Open Source Software.” Society for
Computers and the Law (51) Mar. 2003
<www.nswscl.org.au/journal/51/
Mark_H_Webbink.html>.

About the Authors

Douglas J. Parsons is
the lead engineer of the
Intelligent Simulation
Systems Team at the U.S.
Army Program Executive
Office for Simulation,

Training, and Instrumentation. His pri-
mary focus is toward the successful
development of the One Semi-
Automated Forces Objective System.
Parsons has a Bachelor of Science in
mechanical engineering from North
Dakota State University, a Master of
Science in systems management from
Florida Institute of Technology, and a
Master of Science in industrial engineer-
ing from the University of Central
Florida.

Program Executive Office-Simulation
Training and Instrumentation 
(PEO-STRI)
12350 Research PKWY
Orlando, FL 32826
Phone: (407) 384-3821
E-mail:doug.parsons@peostri.army.mil

Robert L. Wittman Jr.,
Ph.D., currently works
for the MITRE Corpo-
ration supporting the
One Semi-Automated
Forces Objective System

program. He has been part of the U.S.
Department of Defense modeling and
simulation community since 1990. He
has a Bachelor of Science in computer
science from Washington State Univer-
sity, a Master of Science in software engi-
neering from the University of West
Florida, and a doctorate in industrial
engineering from the University of
Central Florida.

MITRE Corporation
3504 Lake Lynda DR
Orlando, FL 32817
Phone: (321) 235-7601
E-mail: rwittman@mitre.org


